An accessible and up-to-date treatment featuring the connection between neural networks and statistics A Statistical Approach to Neural Networks for Pattern Recognition presents a statistical treatment of the Multilayer Perceptron (MLP), which is the most widely used of the neural network models. This book aims to answer questions that arise when statisticians are first confronted with this type of model, such as: How robust is the model to outl ...
This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. ...
Statistical Estimation of Epidemiological Risk provides coverage of the most important epidemiological indices, and includes recent developments in the field. A useful reference source for biostatisticians and epidemiologists working in disease prevention, as the chapters are self-contained and feature numerous real examples. It has been written at a level suitable for public health professionals with a limited knowledge of statistics. Other key ...
Large surveys are becoming increasingly available for public use, and researchers are often faced with the need to analyse complex survey data to address key scientific issues. For proper analysis it is also important to be aware of the different aspects of the design of complex surveys. Practical Methods for Design and Analysis of Complex Surveys features intermediate and advanced statistical techniques for use in designing and analysing comple ...
A state-of-the-art introduction to the powerful mathematical and statistical tools used in the field of finance The use of mathematical models and numerical techniques is a practice employed by a growing number of applied mathematicians working on applications in finance. Reflecting this development, Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition bridges the gap between financial theory and computational ...
A mixed model allows the incorporation of both fixed and random variables within a statistical analysis. This enables efficient inferences and more information to be gained from the data. The application of mixed models is an increasingly popular way of analysing medical data, particularly in the pharmaceutical industry. There have been many recent advances in mixed modelling, particularly regarding the software and applications. This new editio ...
The first edition of Statistics and the Evaluation of Evidence for Forensic Scientists established itself as a highly regarded authority on this area. Fully revised and updated, the second edition provides significant new material on areas of current interest including: Glass Interpretation Fibres Interpretation Bayes’ Nets The title presents comprehensive coverage of the statistical evaluation of forensic evidence. It is written with the assump ...
Around the world a multitude of surveys are conducted every day, on a variety of subjects, and consequently surveys have become an accepted part of modern life. However, in recent years survey estimates have been increasingly affected by rising trends in nonresponse, with loss of accuracy as an undesirable result. Whilst it is possible to reduce nonresponse to some degree, it cannot be completely eliminated. Estimation techniques that account sy ...
A comprehensive, must-have handbook of matrix methods with a unique emphasis on statistical applications This timely book, A Matrix Handbook for Statisticians, provides a comprehensive, encyclopedic treatment of matrices as they relate to both statistical concepts and methodologies. Written by an experienced authority on matrices and statistical theory, this handbook is organized by topic rather than mathematical developments and includes numero ...