TakeBooks.com TakeBooks.com TakeBooks.com
TakeBooks.com
TakeBooks.com
  Знания и навыки> Учебная и научная литература> Естественные науки>

Математика

TakeBooks.com
TakeBooks.com
 Каталог
:: Java книги
:: Авто
:: Астрология
:: Аудио книги
:: Биографии и Мемуары
:: В мире животных
:: Гуманитарные и общественные науки
:: Детские книги
:: Для взрослых
:: Для детей
:: Дом, дача
:: Журналы
:: Зарубежная литература
:: Знания и навыки
   :Бизнес-книги
   :Компьютерная литература
   :Научно-популярная литература
   :Словари, справочники
   :Учебная и научная литература
     :Безопасность жизнедеятельности
     :Военное дело
     :Гуманитарные и общественные науки
     :Естественные науки
       :Астрономия
       :Естествознание
       :Математика
       :Механика
       :Физика
       :Экология
     :Задачники
     :Зарубежная образовательная литература
     :Медицина / здравоохранение
     :Монографии
     :Научные труды
     :Практикумы
     :Прочая образовательная литература
     :Сельское и лесное хозяйство
     :Технические науки
     :Учебники и пособия для вузов
     :Учебники и пособия для ссузов
     :Учебно-методические пособия (методички)
:: Издательские решения
:: Искусство
:: История
:: Компьютеры
:: Кулинария
:: Культура
:: Легкое чтение
:: Медицина и человек
:: Менеджмент
:: Наука и образование
:: Оружие
:: Программирование
:: Психология
:: Психология, мотивация
:: Публицистика и периодические издания
:: Разное
:: Религия
:: Родителям
:: Серьезное чтение
:: Спорт
:: Спорт, здоровье, красота
:: Справочники
:: Техника и конструкции
:: Учебная и научная литература
:: Фен-Шуй
:: Философия
:: Хобби, досуг
:: Художественная лит-ра
:: Эзотерика
:: Экономика и финансы
:: Энциклопедии
:: Юриспруденция и право
:: Языки
 Новинки
Ford Maverick since 2022, service e-manual
Ford Maverick since 2022, service e-manual
 
 

Fat-Tailed Distributions

Fat-Tailed Distributions
Автор: Jolanta Misiewicz
Издательство: John Wiley & Sons Limited
Cтраниц: 1
Формат: PDF
Размер: 0
ISBN: 9781119054191
Качество: excellent
Язык: 
Описание:
This title is written for the numerate nonspecialist, and hopes to serve three purposes. First it gathers mathematical material from diverse but related fields of order statistics, records, extreme value theory, majorization, regular variation and subexponentiality. All of these are relevant for understanding fat tails, but they are not, to our knowledge, brought together in a single source for the target readership. Proofs that give insight are included, but for most fussy calculations the reader is referred to the excellent sources referenced in the text. Multivariate extremes are not treated. This allows us to present material spread over hundreds of pages in specialist texts in twenty pages. Chapter 5 develops new material on heavy tail diagnostics and gives more mathematical detail. Since variances and covariances may not exist for heavy tailed joint distributions, Chapter 6 reviews dependence concepts for certain classes of heavy tailed joint distributions, with a view to regressing heavy tailed variables. Second, it presents a new measure of obesity. The most popular definitions in terms of regular variation and subexponentiality invoke putative properties that hold at infinity, and this complicates any empirical estimate. Each definition captures some but not all of the intuitions associated with tail heaviness. Chapter 5 studies two candidate indices of tail heaviness based on the tendency of the mean excess plot to collapse as data are aggregated. The probability that the largest value is more than twice the second largest has intuitive appeal but its estimator has very poor accuracy. The Obesity index is defined for a positive random variable X as: Ob(X) = P (X1 +X4 > X2 +X3|X1 ? X2 ? X3 ? X4), Xi independent copies of X. For empirical distributions, obesity is defined by bootstrapping. This index reasonably captures intuitions of tail heaviness. Among its properties, if ? > 1 then Ob(X) < Ob(X?). However, it does not completely mimic the tail index of regularly varying distributions, or the extreme value index. A Weibull distribution with shape 1/4 is more obese than a Pareto distribution with tail index 1, even though this Pareto has infinite mean and the Weibull’s moments are all finite. Chapter 5 explores properties of the Obesity index. Third and most important, we hope to convince the reader that fat tail phenomena pose real problems; they are really out there and they seriously challenge our usual ways of thinking about historical averages, outliers, trends, regression coefficients and confidence bounds among many other things. Data on flood insurance claims, crop loss claims, hospital discharge bills, precipitation and damages and fatalities from natural catastrophes drive this point home. While most fat tailed distributions are ”bad”, research in fat tails is one distribution whose tail will hopefully get fatter.

NEAR Wallet
Просмотров: 45

Пресс - релиз

string(4) "true" int(290)

К настоящему времени нет отзывов!
Вход 
Если Вы забыли пароль, щелкните здесь





Вы новый клиент?
Зарегистрируйтесь
 
 Информация 
Свяжитесь с нами
Как скачать и чем читать
  Quiero dinero © 2007